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We study a neural network model consisting of N neurons where a dendritic 
connection between each pair of neurons exists with probability p and is absent 
with probability 1 - p .  For the Hopfield Hamiltonian on such a network, we 
prove that ifp ~> c[(ln N)/N] m, the model can store at least m = ~cpN patterns, 
where ~c ~ 0.027 if c/> ~ 3 and decreases proportional to 1 / ( - ln  c) for c small. 
This generalizes the results of Newman for the standard Hopfield model. 
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1. INTRODUCTION 

Over the last decade the study of neural network models has become a 
major, rapidly developing area of research in both physics and computer 
science (see, e.g., ref. 11 or 7 for a recent review). The typical model of a 
neural network functioning as an autoassociative memory consists of a set 
of, say, N neurons each of which may be in a certain number (typically 
two) states. This state space SN is described by a set of N spins ai. Any 
element of the state space Su can be chosen as a pattern one wants to 
memorize. Given a number  m of such patterns, denoted ~ 1 ..... ~% one wants 
to define a Hamil tonian function H u ( a  ) (which of course depends on the 
patterns 4/) on the space Su in such a way that a Markovian time evolu- 
tion governed by this Hamiltonian has m stationary states each associated 
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to one of these patterns. The classical choice of this Hamiltonian is that of 
the Hopfield model, (12) where one sets 

1 N 

but many variants of this model are presently being used. An important 
question is to know the storage capacity of such a model, i.e., for which 
number m of patterns a network of given size N will function properly. It 
has been found numerically (t2~ as well as by nonrigorous analytical com- 
putations 0, 19) that there exists a sharp ac such that if m ~ acN, the original 
patterns can be retrieved provided a small fraction of errors is allowed, 
while above this number of patterns the memory fails. The number of 
rigorous results on this question is fairly limited: McEliece et aL (17) have 
shown that if no errors are allowed in the retrieved patterns, then m has to 
be smaller than N/ln N. On the other hand, Newman ~8) (see also ref. 13) 
proved that there exist local minima in the Hamiltonian function (1.1) near 
each original pattern which are surrounded by energy barriers of height eN, 
provided m ~< a~N, with ~ at least 0.055. We will give a precise statement 
of this result later. These results have been generalized recently to the 
Potts-Hopfield model. Results concerning the actual existence of invariant 
measures for some dynamics are available only for much smaller numbers 
m ~< a In N of patterns. (~5' lo~ 

An important feature in the Hamiltonian (1.1) is that it assumes a con- 
nection between any pair of two neurons, an architecture that is clearly not 
practical in very large networks and certainly not the one used, e.g., in the 
brain, where the number of dendrites connecting to a given neuron is only 
of the order of 104 while the total number of neurons is of the order of 109. 
To study a more realistic architecture, one may consider a model in which 
each pair of neurons is connected at random with (small !) probability p, 
where p will be allowed to depend on N. The Hamiltonian of this so-called 
dilute Hopfield model is given as 

1 N 

", " =  /~ = 1 

where ei j -e j i  are, for i>  j, independent identically distributed random 
variables (i.i.d.r.v.'s) which take the value one with probability p and zero 
with probability 1 - p ,  with the natural interpretation that the neurons i 
and j are connected by a dendrite if e,y = 1 and disconnected otherwise. 
Note that here we assume symmetric connections of the neurons. As we 
shall indicate in the last section, this assumption may be removed, 
however, without altering our results. 
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Dilute neural networks are considered frequently in the literature (see, 
e.g., refs. 14, 2, 6, and 8). Most references concern the highly dilute model 
of ref. 6, whose dynamic permits exact solutions, but which does not work 
as a memory in the sense of the normal Hopfield model. Concerning the 
weakly dilute model, there exist some sparse numerical results and some 
remarks based on the replica method, (2'3) but we are not aware of any 
rigorous results nor of a careful and systematic numerical investigation of 
this model. 

One would now like to answer the question of how the storage 
capacity depends on the two parameters p and N, and in particular how 
small p is allowed to be taken to obtain a functioning memory. It has been 
suggested(16. 19) that the memory capacity should in general be proportional 
to the number of synapses, which in our case would suggest m ,,~ epN, but 
it is clear that this linear regime cannot possibly remain valid for arbitrarily 
small values of p, as we shall discuss in a moment. In the present paper we 
extend the analysis of Newman to the Hamiltonian (1.2). We will show 
that for p > c[(ln N)/N] 1/2, with c2..~ 7, one may indeed store up to ecpN 
patterns, where ~c ~0.027. If c decreases beyond this value, ec begins to 
decrease roughly proportional to 1 / ( - l n  c), and for p that decreases with 
N even more rapidly we have no results. 

The appearance of a critical value for p in our bounds is quite 
intriguing. In fact, the very nature of the random network on which our 
model is based makes it plain that for some p small enough, the memory 
function must fail. Let us explain this: It is known that for random graphs 
(see, e.g., the text by Bollobas (4)) with connectivity rate p there exist a 
number of threshold values at which the nature of a "typical" graph 
changes: First, for p <  1/_~, the graph is made of a large number of finite 
connected components. At p = l/N, a so-called "giant component" appears, 
whose size is at first proportional to In N, and which grows, as p grows 
above l/N, to a fraction of N, until, at p = In N/N, it engulfs the entire 
graph. Thus p = In N/N appears to be the lowest value for which one may 
reasonably expect the network to function in a normal way. We will see 
that this value of p also appears as the critical value in a number of our 
estimates. Of course, mere connectedness is not sufficient for a functioning 
of a neural network, and it may not be too surprising that the critical 
threshold we get is considerably higher. While our estimates are certainly 
not optimal and we cannot prove upper bounds for the storage capacity, 
we conjecture that there is indeed a critical dilution rate of the order of 
1/w/-N and we will give some argument support ing this conjecture. 

To be able to make precise statements, let us introduce some notation. 
We write ~ for the configuration of spins (ai,..., 0"N), ~u for the pattern 
(~,... ,  ~v) and ~ ]N.m for the family of patterns (41 ..... 3"). The patterns will 
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be considered as "random", i.e., each family of patterns ~ [N,m will be 
considered as the restriction of a random variable ~ on a probability 
space ((2, i f ,  Pc), where (2 is the space of sequences { ~ } i ~ n . , ~ n ,  with 
~ E { - 1, + 1 }, f f  is the corresponding a-algebra, and Pc is taken as the 
product measure IZ,=I-[i~N I-Iz~n Pr with IZ~ the symmetric Bernoulli 
distribution concentrated on _+ 1. Note that we prefer to introduce a 
probability space of infinite sequences and consider for N and m finite, 
~lN, m as  cylinder variables rather than to introduce different probability 
spaces for finite systems. We denote by M the N•  N symmetric random 
matrix whose elements are Mu=Mj~=e u, where for i>~j the eu are 
i.i.d.r.v.'s whose common distribution pp assigns the value one with 
probability p and the value zero with probability 1 - p .  We denote the 
corresponding probability space by (F, i f ' ,  IZM). 

Let us introduce the notation ~ for the N•  N matrix all of whose 
elements are equal to one. Finally, we will write g"6 for the vector 
~P'ff : ( ~ a  1 ..... ~ V a U ) .  The Hamiltonian for the dilute Hopfield model can 
then be written in the simple form 

r~ 

HN(~) = piV ~Z-~T~I (~"~, M~"a) (1.3) 

Note that the values this Hamiltonian function takes are random variables 
on the probability space (s i f ,  Pr (F, ~-', PM); however, we do not 
keep track of this fact in our notation. The standard Hopfield model results 
as the special case where p = 1 and thus M = ~. 

We define on the space of spin configurations the usual Hamming 
distance, 

d(6, ~ ' )=  I [ N -  (~, ~')] (1.4) 

that is, the number of components of the spins 6 and ~' that disagree. For 
any ~ and any number 6 ~ [0, 1 ] we denote by 5e(o, 6) the sphere of radius 
6N centered at ~, i.e., 

5e(t~, 6) - {a'[ d(6, ~') : [6N] } (1.5) 

where [3N] denotes the largest integer smaller than or equal to fiN (in the 
sequel we will often write simply 6N instead of [6N] whenever it is clear 
that the corresponding quantity must be an integer). Let us set 

h N ( O  , r ~- min HN(6' ) (1.6) 
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We will say that there exists an energy barrier of height eN centered at ~ 
if for some 6 ~ (0, 1/2), 

hN(~ ~', 6) >~ HN(~") + 8N (1.7) 

We are now in the position to announce our main result: 

Theorem 1. Suppose p ~> c[(ln N)/N]I/2. Then there exists ~c ~> 0 
such that if m <~ ~cpN, then there exists e > 0  and 0 < 6 < 1/2 such that 
there exists ? > 0 such that 

[~MIP~[ ~__1 (hN(~,~)>HN(~)+eN} 1 

~> 1--e-~UJ--, 1 as N T ~  (1.8) 

where the convergence in (1.8) is exponentially fast in N. Moreover, we 
have the following bounds on ~ :  

~c ~ (16 ln{218(1 + a)]  1/2 } ln{218(1 + a)]1/2}) -1 

where: 

(i) 
(ii) 

(iii) 

a ~ 0 if (p2N/ln N) Too. 

a < � 8 9  c2> ~7 .  

a = 1 + 2/c otherwise. 

Remark. In the Hopfield case (i.e., p = 1), such a result was first 
obtained by Newman. (is) 

Remark. Our bounds on the probabilities in Theorem t also imply, 
by the Borel-CanteUi lemma, (5) that 

lim P~ {hN(~ I~, 6) > HN(~ u) + eN NT ~176 1 
and that 

= 1 PM-a.s. (1.9) 

l iminf  inf {hN(~ ~, b)-HN(~)-~N} >/0 
N] 'oo O~<,u ~< m 

P ~  • Pca.s.  (1.10) 

The original patterns are not the only local minima for our 
Hamiltonian, but there exist others corresponding to certain linear com- 
binations of finitely many original patterns. These were first found in the 
context of the replica method by Amit et al., (1) and Newman (18) has proven 
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a theorem analogous to Theorem 1 establishing their existence. We will 
show that under the same conditions on p as in Theorem 1, this result, too, 
carries over to the dilute model. A precise statement of this theorem will be 
given in Section 4. 

The remainder of this article is organized as follows. In Section 2 we 
present the proof of Theorem 1, assuming a result on the largest eigen- 
values of certain submatrices of the random matrix M (Proposition 4), 
whose proof will then be given in Section 3. In Section 4 we investigate the 
"mixed memories" corresponding to superpositions of finitely many of the 
original patterns and prove a theorem analogous to Theorem 1 for them. 
In Section 5 we discuss a number of generalizations of our results, in 
particular to nonsymmetrie networks and to networks with several types of 
dendrites. 

2. P R O O F  OF T H E O R E M  1 

In this section we present the backbone of the proof of Theorem l. Let 
us denote by I a subset of {1, 2,..., N} and for any vector ~ let ~z denote 
the vector in 5P(~, III) that differs from ~ exactly on the coordinates ieI. 
Then (we suppress the subscript N in the sequel whenever no confusion 
may arise) 

1-P~[~=I {h({",6)> H({~')+~N} ] 

= U < + 
1 I =  {1,. . . ,N} 

111 = 5 N  

m 

~ ~ P~[H({~)<~H({~')+eN] (2.1) 
~ =  1 I c  {I , . . . ,N} 

III = 5 N  

Notice that PC here denotes the probability with respect to the random 
variable ~ only and that these probabilities are in itself still random 
variables on the probability space F of the matrices M. We have to show 
that the right-hand side of (2.1) goes to zero as N goes to infinity, for 
suitably chosen 5 and e, provided that M is in a subset / " g o o d  of the 
probability space F whose measure we will later show to go to 1 as N T oo. 
Notice that the number of terms in the sum in (2.1) is m(~) .  We will there- 
fore need to get uniform estimates on the probabilities in the sum that are 
small even when multiplied by this very large number. Note that bounding 
the probability of the union of events in (2.1) by the sum of the 
probabilities introduces a considerable overestimation, since the events 
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corresponding to sets I and I' which are not disjoint are not independent. 
It appears, however, difficult to take this fact into account. 

Let us now consider the probabilities P~[H({/~) ~< H({ ~) + eN]. Using 
that for symmetric matrices M, 

(a, Ma)  - (b, Mb)  = ((a - b), M(a  + b)) 

we have 

1 
H(r - H(r = - ~  ( (r162 Mg~'r j') - ( ~ " ~ ,  Mr162 ) ) 

1 

v r l~ 

1 
- ( (r  - r162 M ( r 1 6 2  + r162 

p N  

1 

V r  2 

It is easy to check that 

(2.2) 

(r162162162 ~f) if ieI 
if i e  U 

(2.3) 

and 

0 if i t [  
(r  2 ( ~ f ~ )  if i ~ I  c 

(2.4) 

where I c denotes the complement of I in { 1,.o., N}. 
We write for v r #, yV= ~,~v. Notice that for # fixed, the components 

of these vectors form a family 

{ Y ~ } i e { I , . . . , N }  
v ~  { 1 , . . . ,m }/{/z } 

of i.i.d, random variables with P e [ y ; =  -t-1] =�89 Let us define the N x N  
matrix Ez whose matrix elements e 0. are given by 

eij if i e l a n d j e F  
e~= a if i e I  c a n d j e I  

otherwise 

(2.5) 
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With this notation we may write 

2{ } 
H ( ~ " ) - H ( ~ ) =  -p -~  (1, E ,1 )+  ~ (y, E,y ") 

vr 
(2.6) 

where 1 denotes the N-vector all of whose components are equal to 1. 
This allows us to write 

Pr ") - H ( ~ )  >/ - eN] 

~6~ =-- 6) v~.N6(I~f-~_6)J>~2N~J 
peNZt "~ (1, E,1) (yV, EzyV) ,]-~ 

<<-infexP [2N 6(x/~_6)j ~-yeXp{-t(N + i. 

: inf exp ~" peN2t (1, E , 1 ) ~  { 
t~>o ~ 2 N ~ 1 - - 6 )  t N ~ J ~ - y e x p  

(y~, Ety ~) 
- ,  2 N-- J vr 

peN2t (1, El1) 
= inf exp ~ 2 N , ~ - ( - ~ _ 6 ) - t N ~ j  

x IEr exp { _ t  (y~, E ~ y ) " ~ ]  m 1 
N 6 ( 1 ~ / ~ - -  6~JJ (2.7) 

Here IZy denotes the expectation with respect to the family of independent 
random variables {yV} introduced above, and Ey denotes the expectation 
with respect to a random N-vector with the same distribution. We have 
used the exponential Markov inequality ~5) and in the last line the 
independence of the variables yV. Also, we have divided all quantities by the 
factor N[6(1 - 6 ) ]  1/2 for later convenience. 

We have to estimate the expectation appearing in the last line of (2.7). 
In the case of the standard Hopfield model, the corresponding quantities 
were shown by Newman ~18) to be essentially Gaussian expectations by 
virtue of the central limit theorem. The following lemma shows that in our 
more general situation, the expectations in (2.7) can still be estimated by 
Gaussian expectations. 

I .emma 1. Let {zi} i=l , . , , ,  N be a family of i.i.d.r.v.'s whose common 
distribution is the standard normal distribution (i.e., Gaussian with mean 
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zero and variance one). Let z = (zl . . . . .  Z N )  and let E z 
with respect to these variables. Then 

605 

denote the expectation 

N ~ J  ~< ~" exp N ~ J  (2.8) 

ProoL Denote by F A the expectation with respect to the random 
variables {Yi}i+a. Then the left-hand side of (2.8) can be written more 
explicitly as 

Fyexp {--t  (y, E/y) 
N ~ J  

= [F_l[F_ic exp { _ 2t y~, ~, Yi ~ } 
i e l j e l  c ~ CiJ 

Denoting by Z i the sum 

we get 

= V Yi% 
z - , ? ,  

(Y, EIy) ~ = 

Now 

~-1 c exp { - 2t ~ yjZj 
j~,c ~/N(1 - 6)J 

where we have used the identity 

exp 

(2.9) 

yjZj ] 
- 2 t  J~E,c ~ J  r 

= I~ cosh [ 2tZj ) 
, o , c  

~< J~HF exp \ x / N 0 - 6 ) / '  ) 

f 2,+z, = J~HF W+exp [ ~ j  

oo 

(2.11) 
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and the inequality cosh x ~<exp(�89 Thus we get that 

Wy exp { -- t N ~ I } ( Y '  ExY) 

~< > {%~,c7, exp {i~ c ~ ;2 tz jZJ)  

=~-,zJ,J~,~E'exp{~ 2ty~ (---~\/~~)~zje~ \)  

2tyi2~ 

where we have set 

(2.12) 

~ - -  Z j g / j  

Now, just as before, 

2tyiZ@ f ~  2tzi2i~ 

and we finally we arrive at 

(y, E/y) 
tzy exp { - t  N ~  j 

zi zj ] 
~Nz{z,)io,W{z,}jc,cex p 2t ~ ~ =-- ~ e  o, (2.14) 

ietjezcx/6N~,/N(l--6) J 
which proves the lemma. | 

Notice that the right-hand side of (2.8) reads, in explicit form, 

H: exp{t (z, Ezz) "~ 

f dNz 2t 
= j ~ e x p  { - ~  (z, lid N v/-~l _ 6) E,] z)} (2.15) 

This integral exists, provided the matrix 

2t id E 1 
N ~  



Storage Capacity of Dilute Hopfield Model 607 

is positive definite, and in this case is nothing but the inverse of the square 
root of the determinant of this matrix. Now, for t positive, the positive 
definiteness of this matrix depends on the maximal eigenvalue of the 
random matrix Ez. These will be investigated in the next section. Assuming 
these eigenvalues to be given, we get the following result. 

k e m m a  2. Let •1 ..... /~N be the eigenvalues of Ez. Choose 7>0 .  
Then, for all t/> 0 such that for all i = 1 ..... N, 

1 4t2'~ ~>y (2.16) 
N26(1 -- 3) 

the inequality 

holds. 

Proof. 

~zexp{tN(Z,E,z) ~ t rE~ "~ 
~ . 1  "< exp { ~  N26(1 - 6)J  

Under the assumptions of the lemma, the matrix 

(2.17) 

2t 
id ~ EI 

N \ /6(1  -- 6) 

is positive definite, so that by the remarks above 

N ~ J  =de t  Nxf~l l_6)  

2t ,t~ 
= 1 N x / ~  1 6) i=1  

(2.18) 

2t El) - 1/2 
det ( id-  N x / / ~  _ & ) 

= 1 N ~ ) ~ i  1 
i = l  i=1  

IN/2] ( 4t 2 2\-- 1/2 

2t + 
N x f ~ - 6 )  

2i) - 1/2 

(2.19) 

Notice further that the spectrum of Et is always symmetric, i.e., if s is a 
nonzero eigenvalue of El with eigenvector v, then the vector w, where 
wi = - vi for i e  I and wj = vj for j ~  I c, is an eigenvector for the eigenvalue 
- 2 .  We can thus arrange the 2i in such a way that 2~>~0 for i<~ EN/2]. If 
N is odd, since tr E~ = 0, E I has at least one eigenvalue zero. Thus, 
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This latter product can be further bounded, using our assumption (2.16), 
by 

_ 4t 2 22 ~ 1/2 
[]JI3 ( 1 N2~(1 -  61 ij 
i=1 

E~3 ( {4t2/N26(l_6)};~ ~t/2 
= 1 + 1-- {4t2/N26(1- 6)}2~J i=1 

IN/Z] ( 4t22~ .']1/2 
~< H 1 + N 2 ~ T a ) y  j 

i=1 

(LN/21 2fl22 "[ t2 El} (2.201 
~<exp l i=l~I1 N26( 1 - 6 ) 7 3  =exp {7N26-( 1 -6) tr  

which proves the lemma. | 

Remark. The estimates used in particular in (2.20) may look some- 
what grotesque. However, for the range of t values we will finally use they 
give away rather little and the convenient form of the bound obtained is 
well worth the concessions we make. Of course, our final numerical bounds 
on the storage capacity could in principle be improved a little by refining 
these bounds. 

In the case of the standard Hopfield model (i.e., p = 1), the matrices EI 
have two eigenvalues equal to ___ N [ 6 ( 1 -  6)] 1/2 and all other eigenvalues 

2_ 2N25(1_ 6). One may then choose, e.g., equal to zero. Moreover, tr E , -  
? = �89 to obtain the bound exp(4t 2) for all t ~< 1/.~//'8, from which the result 
of Newman ~ follows easily. The essential new feature in the dilute model 
is that we need to obtain probabilistic bounds on the largest eigenvalue of 
the random matrices E,, as well as on the traces of E/2. This will be done 
in the next section. An essential difficulty that arises there is that we need 
such bounds uniformly for all subsets I of given volume. As we shall see, 
this is the main reason why we need to restrict ourselves to dilution rates 
p > c[(ln N)/N] 1/2. 

Let us now assume that our dilution matrix M is such that for all 
I c  {1,..., N} such that Ill = giN, the following conditions hold: 

(C1) maxi2~<<.6N2p2(1 +a). 
(C2) 2N2p6(1 -3 ) (1  -x)<<.trE:t<~ZN2p6(1 --3)(1 +x) .  

Then we may choose y > 0  and use (2.17) for all 

1 '/2 
O t<'T-Vp ( 
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and therefore get 

Pr162 ~) - H(~)/> - eN] 

inf exp" epN2t ~< 
O<,<r [ 2 N x / ~ _ 6 )  

t trE/2 

N x/a(1 - 5 )  

609 

t 2 
+ m tr E2~ " 

~N25(1 5) 
(2.21) 

Let us now set m = ~pN and define 

7 -  P 
~ '  - 2 x f f 6 \ l  + a  ] 

Then the right-hand side of (2.21) becomes 

{ ( 2  p2r 7p2r " t r E  2 ~trE~ )}  inf exp N -7--:-~-.,+---:=-s-~, 72 

~<o~<~inf exp{N(712-25(1-5)(1-x)l+~-25(1-6)(i+x)~2)}7 

(2.22) 

where we have inserted the bounds (C2) for the trace of E~. The exponent 
on the right of (2.22) is minimized for 

7=t*=~ +x 4~(1-5)(1+x) 

and thus, provided t*~< ]', we get 

P~[H(~") - -  H ( ~ )  ~> - eN] 

~exp - ~ 1-~xx 45(1 - 5 ) ( 1 + x )  (2.24) 

Notice that this bound is uniform in I and so 

P r H( ~U) -- H( ~]) >~ - ~N] 
r~'l = ~ N  

~< exp 2c~ l + x  45(1 - 6)(l + x) ]= 

~< exp { - N [ 5  In & + (1 - 3) ln(1 - 6)] 

- N  6 (1 -5 ) (1+x1  + x  45(1 - 5 ) ( 1 + x )  �9 (2.25) 
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In order for this probability to converge to zero as N l" ~ ,  the coefficient 
of N in the exponent must be negative. This, together with the constraint 
7* ~< 7", implies the following two conditions on our parameters: 

In( Y (1 - 6)(1 + x) Y (2.26) - l n 6 - ( 1 - 6 )  6 1  -__) ..< ~_~ 

and 

Here we have put 

1 ( 1 - 7 )  '/: 
0 <<. ~ Y <<"~-~ \ I + a / (2.27) 

Y -  + x  4 3 ( 1 - 6 ) ( 1 + x )  

By choosing e, we may vary Y between 0 and ( l - x ) / ( 1  +x) ,  and for x 
small (which will be the only case we consider), we may obtain, e.g., Y= �89 
We can choose 7 between 0 and 1, but since we are interested in obtaining 
c~ as large as possible, we should not choose 7 very small. In fact, little can 
be gained over a choice 7--�89 With these choices, (2.26) and (2.27) are 
compatible if 

_ l n  6 _  (1 _ 6)In(1 - 6 )  1 [- 1 71/2 
~ < 4 - - ~ [ 2 ( 1 + a ) ]  ( 1 - 6 ) ( l + x ) ( 2 . 2 8 )  6 

It is easy to see that for any a fixed, there exists 60 > 0 such that for 3 ~< 60, 
(2.28) is satisfied. In fact, such 60 exists even if a is allowed to grow as 6 $ 0, 
provided only 

]ln6] [6(1+a6)]1/2~0 as 6],0 (2.29) 

It is not difficult to get reasonable estimates for 3 o. Since we anticipate 
60 ~ 1, and putting 412(1 + a ) ] 1 / 2 -  = b, 6 0 is essentially the solution of 

1 (2.30) ~ o  ]In 6ol = 

Whose solution can be obtained by a standard iteration procedure to 
arbitrary accuracy. The first nontrivial approximant yields 

1 (2.31) 
x ~ o  ~ 2b In 2b 

The maximal allowed ~ such that (2.26) is satisfied is then obtained if 6 is 
chosen as small as possible, i.e., equal to 60. Then 

1 1 
(2.32) ~c ~ 16 ]In 6o-----~ ~ 16 ln(2b In 2b) 
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We collect the results of the foregoing discussion in the following 
statement. 

Proposition 3. Suppose the matrix M satisfies conditions (C1) 
and (C2) with 0 ~< x ~ 1 and a arbitrary but independent of &. Then there 
exists 

c~c~ (16 ln{218(1 + a ) ]  1/2 } ln{218(1 +a)]1/2}) -1 

such that if m <<. c% pN, there exists e > 0 and 6 > 0 such that 

Pc[ ~-~ {hN({~,6)>HN(~f)-I-~N}]--*I as NToe (2.33) 
# = 1  

Moreover, the rate of convergence to 1 is exponential in N. 

Theorem 1 now follows immediately from the following result: 

Proposition 4. Assume p/> c[(ln N)/N]I/2 for any constant c > 0. 
Then 

P~[VZ:LZI=6N {(C1) A (C2)}] T 1 as N]" 1 (2.34) 

where in (C2) x > 0 may be chosen arbitrarily small, while the choice of a 
in (C1) depends on p, namely: 

(i) Ifp2N/ln NT oo, any a such that (1 - &)(1 + a) > 1 suffices. 

(ii) If Np 2 = c 2 in N, with c 2 sufficiently large (,-,7), a may be chosen 
less than ,-~ ~- 2" 

(iii) Otherwise, we must choose a > 1 + 2/c. 

The rate of convergence in (2.34) is faster than any power of 1IN in 
case (i). In the other cases the convergence is like a power of l/N, which 
depends on the choice of a and which can be made as large as desired. 

The proof of Proposition 4 will be given in the next section. Assuming 
this proposition, the proof of Theorem 1 is now finished. | 

3. B O U N D S  O N  T H E  E I G E N V A L U E S  OF E I 

In this section we provide the necessary probabilistic estimates on the 
traces and eigenvalues of the matrices Ez which will yield Proposition 4 and 
thus conclude the proof of our main Theorem 1. We begin by stating the 
following technical lemma, which will be convenient for later use: 

822/69/3-4-11 
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L e m m a  5. Let {e~}i~ be a family of i.i.d.r.v.'s such that 
P(e~ = 1 ) = q and P(e~ = 0) = 1 - q. Then: 

(i) If c= Mq(l + y), 0 ~ < y ~ l ,  then 

P[~--~x >~c]<~exp{ -Mqy--~( - - ~ e - ) } < ~ e x p { - M q - f  
\ ~ I )  

(ii) If c=Mq(1 + y), y >  1, then 

M 

P I ~ = x e i > ~ c ] ~ e x p { - M q ( y - ~ - ~ ) }  

(iii) If c = M q ( 1 -  y), y > O ,  then 

M 

(3.1) 

Proof. 
inequality (5) and the independence of the r.v.'s ei, we have that 

P ei>>.c <.infexp(-ct)[Eexp(tel)]  M 
i 1 t ~>0  

= inf exp(--ct)  exp{Mln[q(e ' -  1) + 1] } 
t~>O 

(3.2) 

(3.4) 

Now for all t ~> 0, 

q t2 , q t3 t 
ln[q(e ' - -  1 )+  1] <<.qt+-~-+-~-e (3.5) 

Therefore 

P ei>~c ~<infexp - - t (c - -Mq)+Mq + ~ e  t 
i 1 t>~O 

~<infexp - Mq ty -- ~ + e t 
t~>O 

~< inf e x p { - M q y ( y - y l ) }  
O < ~ y l < .  y 

(3.6) 

We first prove (i) and (ii). Using the exponential Markov 

(3.3) 
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where the last inequality was obtained by setting t =  Y - Y 1 .  If y~< 1, we 
may bound (3.6) by putting Yl = 0, which gives (3.1). On the other hand, 
if y > 1, we set Yl = Y -  1, which gives (3.2). This latter bound is good for 
large y and could of course be somewhat improved for y only slightly 
bigger than 1, but we will not need this here. Now to prove (iii), just note 
that 

P ei<~c 
i 1 

inf exp(ct) [~ e x p ( - t e l ) ]  M 
t~>0 

= inf e x p ( c t ) e x p { M l n [ q ( e - ' -  1)+ 1]} (3.7) 
t~>O 

and since for all t ~> 0, 

ln[q(e t _ l ) + l ] ~ < _ q t +  qt" 
2 

(3.8) 

this time we get simply 

P e/~<c ~<infexp - t ( M q - c ) + M q  
i 1 t~>O 

(3.9) 

where the last line is obtained by setting t = y. This concludes tile proof of 
Lemma 5. | 

The first simple application of Lemma 5 gives the following bounds o~a 
the traces of E~. 

and 

I . emma  6. Suppose p ~> In N/N. Then for any x > 0, 

2 2 ( l + x ) p U 2 6 ( l _ 6 ) ] + O  P[3/:m =aN tr E x ~> as NT oe (3.10) 

2 2 ( l _ x ) p N 2 6 ( l _ 6 ) ] $ O  as NToo (3.11) P E3~:m = ~u tr E I <~ 

where in both cases the rate of convergence is faster than exponential in N. 

ProoL We will just bound the probability of the union of events by 
the sum of the respective probabilities. Doing this and using the symmetry 
of our probability space, we get 
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P [31:11[ =aN tr E 2 >~ 2(1 + x) pN26(1 - c5)] 

~< ~ P [2 ~ ~0.>~2(1+x)pN26(1-6)]  
k i e I  d 

6N p eu>~(l + x) pN26(1-6) 

N Ix 2 x 3 
-<..~ ( ~N) exp { -pN2~(1- 6) k-~---~ eX]} (3.12) 

where the last inequality is an immediate application of Lemma 5. 
(We have assumed x < 1, which of course implies afortiori the result for 
larger x). Now for any x and 6 fixed, the exponential in (3.12) decays at 
least as fast as exp ( -  cN In N), while the binomial factor is bounded by 

(~N)<<.exp{N(6 ,ln ~l + (1 -6 ) , ln (1  -~ ) , )}  

from which (3.10) follows. Condition (3.11) is proven in just the same way. 
using part (iii) of Lemma 5. I 

We turn now to the bounds on the maximal eigenvalue of the matrices 
E;. The following lemma provides the basis for our later probabilistic 
bounds: 

kamrna 7. If E; has a maximal eigenvalue ;t o, then there exists i E I 
such that 

Z e;j+ Z Z e;jej,>~2g (3.13) 
j e I  c leI/{i} j e l  c 

Proof. Note that all matrix elements of E; are nonnegative. There- 
fore, by the Perron-Frobenius theorem, there exists an eigenvector with 
only nonnegative components corresponding to the maximal eigenvalue ~,0. 
If we denote the components of this vector by v/and take into account the 
fact that the matrix E 2 is block diagonal with respect to the index sets I 
and I c, the eigenvalue equation E~v =22v implies that for all i~I, 

l ~ l j ~ l  c 

= E 8 i j V i +  E Z ~Og'Jl UI 
j ~ l  c I~1/{i} j ~ l  c 

E ~iJ vi "~- m a x  (v;) E E ~ij~j I 
jelC l e l  lel /{i}  j e l  c 

(3.14) 
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In particular, for.the i e I  for which vi=maxt~l(Vl), this gives 

2o<~ • eo+ 2 2 eo~J, (3.15) 
j~Z c l~I/{i} j~I c 

which proves Lemma 7. | 

I . e m m a  8. Assumep>~c[(ln N)/N] 1/2 for any constant c > 0 .  There 
exists a > 0, depending on c, such that 

P[3,:I,I=aN2~(E,)>~p2N2c~(1-6)(I+a)]+O as N] 'oo (3.16) 

Moreover, the constant a may be chosen in the following ways: 

(i) If p2N/ln N~ o% any a such that (1 - 6)(1 + a) > 1 suffices. 

(ii) If Np2= Cln  N, with C sufficiently large (~7) ,  a may be chosen 
less than ~ �89 

(iii) Otherwise, we must choose a >  1 +2/.,,/7. 

The rate of convergence in (3.16) is faster than any power of 1/N in 
case (i) and can be made as fast as any desired power of 1/N in cases (ii) 
and (iii) by appropriately choosing a large enough. 

ProoL First observe that by Lemma 7 

2 
P F 3 I :  111 = ,SN 20(Et) ~" c] 

~j~l c leI/{i} j~l  c 

~ [ ~ l : l I l = 6 N 3 i ~ I  E ~i j~P c] 
je I c 

+~2~[~l:'ll-6N~ieI E E 'ijgjl ~(1-p)C] (3.17) 
l~I/{i} jeI  c 

where 0 < p < 1 can be chosen arbitrarily. To bound the first term in (3.17), 
notice simply that 

j~l  c jEI c 

~ N P  I~I:l elj~EF ~Ij~ pc l  

j= 
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We may  write 

pp~NZf(1--6)(1+a)=pN{1 + [ p 6 ( 1 - 3 ) ( 1  + a ) p N -  1]} 

and use case (ii) f rom L e m m a  5 to get that  

P [~I:II]=6N 3iE, E gu>~pp2N26(1-a)(l+a)] 
jel c 

<<.Nexp{-pN[p(1 +a) 6(1 -6)pN-2]} (3.19) 

which for any p, a, and 6 positive converges to zero at least as fast as 
e -cN~nN under  our  assumpt ions  off p. 

We now turn to the second term in (3.17). Here  we use that  

[ ] p Z 
l~l/{i} j+I c 

~ I3':11[ =6N 3icI ~l~,/{i} E ~O'SJl ~ (1 ,p_)e_l 
j ~ i  c fiN J 

Z 

F N >- (1 --p_p_)(] (3.20) <~ N(N-  1) P Ly=~ 3 eljej2 , /  6N d 

The variables ej = 8ljgj2 are i.i.d.r.v.'s that  take the values 1 with probabi l i ty  
p2 and 0 with probabi l i ty  1 _p2. L e m m a  5 can thus again be used to 
est imate the last probabi l i ty  in (3.20). With  e = (1 + a) 6(1 - 6)pZN 2 and Y 
defined as Y =  (1 + a ) ( 1  - 6 ) ( 1  - p ) -  1 

P eusy2>~(1-p)(l+a)(1-a)p2N ~<exp -Np 2 .-~ 6 eY 
j= 

(3.21) 

if Y~< 1, and 

P eljes2>~(1-p)(l+a)(1-f)p2N <~exp{--Np2[y-1]} 
J 

(3.22) 

if Y > 1. As we have seen, p can be chosen as close to zero as we wish, and 
we really need a result for very small 6, so that  Y is essentially equal  to a. 
In  order  to show tha t  (3.20) goes to zero as NI '  ~ ,  we need to choose Y 
sufficiently big, such that  either (3.21) or  (3.22) goes to zero faster than  N 2. 
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This will of course depend on the behavior of p. We distinguish three 
regimes: 

(i) p2N/ln N T oo. In this case we may choose Y as small as we wish 
and still have our probability go to zero faster than any power. 

(ii) p2N>~ClnN, where C,,~7. In this case Y can still be chosen 
smaller than 1, in particular smaller than the value that maximizes 
y2/2 - y3/6e Y. 

(iii) p2N=ClnN, with C < 7 .  Here we need to use (3.22) and must 
choose a such that Y> 1 + 2/C. 

The speed of convergence to zero is easily read off (3.22). This 
concludes the proof of Lemma 8. II 

Lemma 8, and in particular the estimate (3.20), is the reason why we 
need to restrict the dilution rate p to be at least of the order (ln N/N) V2. 
One may wonder whether this is intrinsic or an artefact of our estimates. 
Now, the criterion furnished by Lemma 7 yields rather reasonable bounds 
on the largest eigenvalue under the conditions of Lemma 8, i.e., they are of 
the order of the largest eigenvalue of the averaged matrix. On the other 
hand, the estimates of Lemma 8 cannot be substantially improved, as is 
shown by the following lemma. 

k e m m a  9. Assume that p<6/~/N. Then, for all c such that 
c<~(1-x)p2N 2, with x > 0 ,  

~ I ~ i : , i i = 6 N ~ i ~ l ~  ~eijejl~C]~l as NToo (3.23) 
lcI/{i} jel c 

Proof. Note that 

P [ ~I:[II =~N~iEI Z ~ ~ij~jl ~C] 
lEI/{i} j~I c 

= I - - P  [VI:III=6NVi~I ~ ~ gij~j;~ r 
/~I/{i} j~I c 

(3.24) 

Now 

~P [Vz:lIl=6NVi~I Z Z gijgj l~C] 
l~I/{i} jEI c 

leI/{1} jeI r 
(3.25) 
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Now the eli are independent from all the other est that appear in the last 
expression, and therefore we may condition on the given realization of the 
e v and sum over all realizations. This gives 

P[VI:[II=SN, 1EI E E ~'ljejl~ c] /~U{1} j~I c 

= ~ P[VI:,,I=aN.I~, ~ ~ elfii,<<.c { e v } ] P [ { e l s } ]  (3.26) 
{~l,j} k lel/{1} j~l c ._1 

The sum over the {ev} can be seen as a sum over all sets J c  {2 ..... N} on 
which e v =  1 [we will see that the conditioned probability in (3.26) 
depends only on the cardinality of that ensemble]. Identifying for sim- 
plicity the set J and the event {ev=  1 if and only i f j e J } ,  the last line in 
(3.26) can be written as 

~j P[VI:III=6N, I~I E ~ ejt<~c J][]z[J] (3.27) 
IEI/{1} j~Jc~l c 

and, defining the random variables 

j~J 
(3.28) 

(3.27) is bounded by 

~P[V/:l,l=aN, le,,,~j~ E A , (J )<~cJ]P[J]  
t~z/{x} 

(3.29) 

The conditioned probability in (3.29) can now be expressed as 

[VI:lIl=6N, lcl, l=JCl ~i/{1}Al(J)<~c] J] 

ISCl [ [ 
= E p ~]t:III=6N, J, el,1 =Jc E At(J) <<'c I{leJ~:At(J) >~ 

r=O I~I/~1} 

x P[I{I~J~:At(J)>~ 1}1 = r l J ]  

1}1 =r,S] 

(3.30) 
We now choose c <<. 6N. Then, for the terms where r >1 c, we always can find 
a set I including a subset of jc  on which the sum of the At(J) exceeds c; 
thus, the corresponding probability is zero. If, on the other hand, r ~< c, 
then taking a set I containing all the index in JC where the At(J) are 
greater :or equal to 1, we get the bound 
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~[D[~/I:]II=bN, 1EI, Icsc 2 At(J) <~c J] 
te1/{~} 

= ~" PI  ~ A,(J)<~c ]{lEJC:A,(J)>~l},-=r,J] 
r~c leJC/{1} 
x P[l{leJC:A,(J)>~ 1}] = r [ J ]  

<~P[ ~ A,(J)<<.c J] (3.31) 
1z J~{1} 

Now 

P A,(J)<.c J = P  ~ ej,<~c (3.32) 
16J I=2 j=c~N+ I 

and inserting all this into (3.26) yields 

PIVI:III=aN, Ir E 2 gljgjl <~C] 
l e / / { 1  } jel c 

<~ P ~ gjt<<.c P ev=m (3.33) 
m = 0  l =  + 2  j = 2  j 1 

The probabilities appearing in the last equation may all be estimated easily 
p N using the bounds from Lemma 5. Note that [ ~ j = ~ e u = m  ] is concen- 

trated at m =pN and that the random variable Z~V=m+2 Y.~__+21 ejt has mean 
pm(N-m) with Gaussian fluctuations. Therefore, if c is chosen as 
c =  ( 1 - x ) p 2 N  2, with x > 0 ,  the sum in (3.33) goes to zero as N ~ m  and 
the lemma is proven. | 

One may prove that the probability in (3.23) goes to zero if c >p2N2. 
However, such a bound does not suffice to obtain a sufficiently good 
estimate on P[H(~)<~H(~U)+eN] to compensate for the exponential 
number of terms in (2.1). One might think that such a large eigenvalue is 
realized only for a small subset of the possible I, but checking through the 
proof of Lemma 9 will also convince one that the number of sets I that 
contribute in (3.23) is still exponentially large once p2N2 is small compared 
to 6N. We take these results thus as an indication that there is a real 
transition in the functioning of the dilute Hopfield model occurring for p 
of the order of 1/v/N. It would certainly be interesting (although maybe 
difficult) to have a numerical check of this conjecture. 

4. M I N I M A  A S S O C I A T E D  TO M I X E D  P A T T E R N S  

Besides the minima located near the original patterns, the 
Hamiltonian (2.2) possesses other local minima corresponding to mixtures 
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of finitely many original patterns which are also surrounded by extensive 
energy barriers. Such minima have been discussed by Amit et al. ~1) and 
their existence in the standard Hopfield model was proven by Newman/18) 
In this section we extend his results to the dilute model. 

For  a given m-vector v let us denote by ~(v) the vector with com- 

ponents 
~i(v) = sign{v1 ~ + ... + vm~ m } (4.1) 

We assume that(18): 

(1) The number D of nonzero components of v is finite (i.e., inde- 
pendent of N). 

(2) _+ vl +_ v2. . .  _+ Vm V a O, for any choice of the _+. 

(3) For  all i and all s, E ~ s ( i ( v ) = v , .  

For  any such v we have the following result: 

T h e o r e m  2. Suppose p satisfies the hypothesis of Theorem 1. 
Let v be a vector satisfying conditions (1)-(3). Then there exists ~c~>0, 
depending on the number  D of nonzero components of v and on the lower 
bound on the quantities appearing in (2) and on p, such that if m <~ ~cpN, 
then there exists e > 0 and 0 < 6 < �89 such that there exists ? > 0 such that 

pM[p~[{h(~(V) ,5 )>H(~(v ) )+eN}]>/1 - -e -~U]- - -~ l  as N] 'oo  
(4.2) 

where the convergence in (4.1) is exponentially fast in N. Moreover, the 
dependence of ~c on p is of the same nature as in Theorem 1. 

Remark. If D is fixed as well as a finite lower bound on the moduli 
of sums appearing in condition (2), Theorem 2 may be slightly 
strengthened to state that the probability that the event in (4.2) holds for 

all such v tends to one. 

Remark. One may of course also extract almost sure convergence 
statements as in the remark following Theorem 1. 

Proof. The proof of Theorem 2 is quite similar to that of Theorem 1. 
We have to estimate from above the probabilities 

P~[H(~/(v))  -- H(~(v))  ~< eN] (4.3) 

For  simplicity and without loss of generality we can assume that the first 
D components of v are those that are different from zero. Defining 
yS_ ~S~(v) ' and repeating the calculations leading to (2.6), we may write 

H(~(v))  - H(~i(v))  = (yS, E,yS) + (yS, EtyS) (4.4) 
s 1 s = D + I  
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We have distinguished the terms with s ~< D and s > D, since for the latter, 
the y~ form a family 

{yj} i=t,...,N 
s = D + l , . . . , m  

of i.i.d, random variables with Pr = _+1] = 1/2. Note that, on the other 
hand, for s ~< D, we have Ey~ = v,. 

Now clearly, for any constant c (to be chosen later), we have that 

Pr [H(~/(v))  - H(~(v)) ~< eN] 

= pc (yS, EiyS) + (y,, EiyS) <~ epN 2 
s i s = D + l  

s =  + 1  s = l  

(4.5) 

The estimation of the first probability in (4.5) proceeds exactly as in 
Section 2, We concentrate thus on the second term. Notice that 

D D 

Z (yS, E i y S ) =  E 2 E ~ o - y ~ y ;  
s - - 1  s - - 1  i ~ l  j E I  c 

D D 

= E E E eoySv, + E E E e,jy~(y}-Vs) 
s - - 1  i c I  j ~ I  c s = l  i ~ I  j 6 l  c 

(4.6) 

Now note that for the first term we get 

o ) 
E E E   yjv,=E E e,J  Sv, L(v) 

s = l  i e l  j r  c i e I  j e l  c s 1 

i ~ l  j ~ l  c s = l  

K 
~ > K Z  Z e;J=~ - t rE2  (4.7) 

i ~ I  j ~ l  c 

for some K > 0 .  Here we have used the definition of ~i(v), and in the last 
line property (2) of the vector v. Note that the constant K depends on v. 
Since Lemma 6 provides sharp uniform bounds in probability for tr E~, we 
are done as far as this term is concerned. 
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For the second term in (4.6) we write again 

D 

E E E g~y:(y~-Vs) 
s = l  i e l  j e l  c 

D D 

= E ~. ~ e~v~(yj-v,)+ ~ ~ E so(Y~-V,)(YJ--v,) 
s = l  i e l  j e I  c s = l  i e I  j e I  c 

(4.8) 

Then 

D 

(ys  lys, .c N 2 ] 

<~ P~ ~_, gijvs(y j -- V,) ~< ~-~ _] 
s = 1 j e  1 c 

+ PC ~, eo.(y i -- v,)(yj  -- Vs) -.~ ~-~ 
j e  , c  

(4.9) 

Now, we may place ourselves in the subspace where conditions (C1) and 
(C2) from Section 2 hold and therefore use the uniform bound t r E ~ >  
(1 -x)pN2a(1 -6). Using the exponential Markov inequality, we get, with 
K ' - ( 1 - x ) ( 1 - a ) K ,  

�9 Pr ~ go(y~ - v , ) ( y }  - Vs) ~< 2D J 
j e l  c 

{ (c-K')6pN2; 
~< inf exp t 

,/>o 2D ) 

x [Ey, exp{ --t((y ~ - v,1), Et(y ~ - v,1))} 

{ (c-K')apN2~ 
~< inf exp t E, exp{ - - t ( l+Vs )2 (z ,E , z )  (4.10) 

,/>0 2D J 

where w Z, as in Lemma 1, denotes the expectation with respect to a family 
of independent standard Gaussian random variables. In fact, (4.10) uses an 
immediate generalization of Lemma 1, where use is made of the following 
simple observation: 

L e m m a  10. 
mean v. Then 

Let y be a random variable taking the values _ 1 with 

E exp{ ( y -  v)t} <~ exp {~ ( l + v) 2} (4.11) 
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ProoL Just notive that 

~ c ( y  v)t 1 - -  V t(1 V + l em-~) +--2 +~ 

e t 
= cosh(t(1 + v)) +~- ( - 2  sinh(vt) + ve v ,  ve (2+~),)) 

cosh(t(1 + v)) ~< e (t2/2)(1 + v)2 | (4.12) 

The estimation of the probability in (4.10) now proceeds as in Sec- 
tion 2. Using Lemma 2, and recalling that T=  (1/2p)[(1 - 6)/2(1 + a)] v2, 
we get that 

j E I  c 

inf 
O<~t<~T 

~< inf 
O<~ t<~ T 

~< exp { 

f (K ' -cx)@N2 erE2 } 
exp , - t 2 D N ~  + 2t2(1 + v')2 N2~ ~-- 6) 

e x p { _ t K ' - - c (  6 ~1/2 
- - f D \ l - - - - ~ J  pN+2(1  +Vs)2t2p(1 +x)}  

K ' - c  2 ( l + a ) J  2p(1--cS)2(1+a ~ N +  (I + Vs) 2 

(4.13) 

where we have put t = T in the last line. 
Finally we must deal with the first summand in (4.9). Using again the 

exponential Markov inequality together with Lemma 10, we get 

P ~ I ~  ~ ~uv~(y~-Vs)<~ c6pN2-KtrE2I] 
i ~ l  j ~ I  c 2D 

~< inf exp - t  ,~o 2DN ) j~e}c IlZyjexp t i~12 eoVs(yJ 

~<infexp - t  +~ -v2 ( l+v , )  2 • ~,j 
,>1o 2DN h c u~1 

{ (K'--c)2p2N462 } 
~<exp - 2v2 1 v z 8D ,( + s) Zj~F ( ~ , i E / e 0 )  2 (4.14) 

Now if 
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for some constant b, then the probability in (4.14) is bounded by 

Pr ~ %v*(y}-Vs)~<cfpN-2-Ktr E21 
j~ F "~ 2D 

{- i '-e)2N 
~<exp 8D2bVs2( 1 + Vs)2 j (4.15) 

M 

which will suffice. For, combining (4.9), (4,13), and (4.15), we arrive at 

j~F 2D J 

~<Dexp 2D + N+p(1-6)2(l+a) 

D e x p {  (K'---c)2N~ 32D2 b j (4.16) 

Here we have used the trivial bound vs ~< 1. It is clear that for c chosen 
small enough (in dependence on K')  and for 6 small enough (depending 
again on K'  and on D), this bound can be summed over all I of size ~N 
and the sum still converges to zero exponentially fast. For the first term in 
(4.5) one obtains, following exactly the calculations of Section 2, a bound 

m 

Pr E,yS)<<.(~-c6)pN21<.exp{-N~6Ic-~l 2} (4.17) 

For c and 6 chosen according to the needs of (4.16) one may now choose 
and ~ small enough to render this probability summable over the L Thus, 

all that is needed to complete the proof of Theorem 2 is the estimate 
leading to Eq. (4.15). It is provided by the next lemma. 

L e m m a 1 1 .  Assume that p>~c(lnN/N) 1/2. Then there exists a 
constant b > 1 such that 

P M  3 I : I I I = f N ~  eij >/bO2N3p 2 $0 as N T ~  (4.18) 
I- j l  c 

where the convergence is exponentially fast in N. 

ProoL The proof of this lemma is again an application of the 
exponential Markov inequality and of Lemma 5. Note that 

t-j~lC X i e l  / 

~< inf exp(-N3pZ~2bt) l-I ~- exp t % (4.19) 
t>~O j ~ l  c i E l  
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To bound the Laplace transform in (4.19), we write 

f (z  )2t exp t e 0 

where PM [Zi~I eq ~ dx] is understood to be the probability distribution of 
the variable x = Z e0- The two integrals correspond to the different bounds 
in Lemma 5 and will be treated separately. Our foremost concern is the 
second one, as it will impose restrictions on the permissible choices of t. 
Note that using (3.2) from Lemma 5, we get 

etX2P ~ ao.>~ x erX2 dp  Y" e i j= X ~ fZOpU ie l  
~26pN Li~: I 

6N 
f2 etx2 - x + ~pN(s + e)/6 

[~pN 
(4.21) 

We will bound this integral only for a restricted set of t values [which, 
however, will be seen to suffice to get a good bound in (4.20)]. For 
simplicity, we require that 

(~ NS+e>_ tx2<~c*x and ( 1 - c * ) x -  p - -~- ; . -0  (4.22) 

for all x in the range of integration in (4.21). This can be achieved by 
setting c* = (4 - e)/12 and t <~ c*/6N. Then 

f2 ( 8 + e \  
ON 6p N- -~ - - )  
~pN exp tx 2 -- x + 

~< apxexp - - (1 - -c* )x  +6pN--~- -  <~ l_c------g 

Given the fact that we needed to restrict t to such a small range, there is 
no advantage to be gained over the following trivial estimate for the first 
integral in (4.20): 

,424  
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Inserting these two bounds into (4.19) and putting t = c*/6N, we get 

t-j~lC \ i~ l  / 

~ e N2p 23b ~1----~'~- [- 1 e4c*aNpZ]N(1A --5) 

~< e N2p2c*~(b_4) (4.25) 

Since under our assumptions NZp 2~ Nln N, this probability is summable 
over the I and tends to zero exponentially fast, provided b is large enough. 
This concludes the proof of Lemma 11 and of Theorem 2. | 

5. G E N E R A L I Z A T I O N S  

So far we have considered a model where dendritic connections 
between two neurons are present or absent, but all existing dendrites have 
the same "strength" and connect the pair of neurons in a symmetric way, 
a fact expressed in the symmetry of the matrix M. In practical situations, 
it may be appropriate to drop these assumptions and to replace the matrix 
M by a more general matrix. Our results can easily be generalized to such 
models. 

Let us first discuss the assumption of symmetry. Using the representa- 
tion (1.3) of the Hamiltonian, we see that 

1 m 

$ 

1 m 1 ~ .~)  (5.1) 

where M - I ( M + M ' )  is again symmetric. The study of networks with 
nonsymmetric matrices is thus reduced to the study of symmetric ones with 
different distributions of the matrix elements. For example, if we consider 
the completely asymmetric dilute model where M is the matrix all of whose 
elements are independent random variables % taking values 0 and 1 with 
probabilities p and 1 - p ,  then this is equivalent to the model with 
symmetric matrix 2tr where for i > j the elements ~'u are i.i.d.r.v.'s that take 
the values 0, 1/2, and 1 with probabilities (l/p) 2, 2 p ( 1 - p ) ,  and p2, 
respectively. 

It is easy to verify that all our results can be proven if e,.j are random 
variables with support on [0, 1 ] and mean p, For under these assumptions 

~_et~ ~ p(e ' -  1)+ 1 
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which  is all  t ha t  is r equ i red  in  Sect ion  3. The  r e q u i r e m e n t  tha t  the ei~ have  

b o u n d e d  s u p p o r t  o n  the posi t ive  half- l ine m a y  even  be sl ightly relaxed,  bu t  

we see to i m m e d i a t e  a p p l i c a t i o n  for the cases t ractable .  O n  the o ther  hand ,  

if e 0 is a l lowed to be s u b s t a n t i a l l y  negat ive ,  the s i t ua t i on  changes  
dras t ica l ly  as we a p p r o a c h  a spin-glass- l ike  m o d e l  where  ou r  resul ts  clearly 

w o u l d  n o t  apply.  
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